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Abstract—Bluetooth Smart is emerging as arguably the first
global low-power wireless standard for the Internet of Things,
bringing with it billions of devices, or ‘“Things”, capable of
spontaneously broadcasting short messages to any potential
receiving devices in range. If a widespread infrastructure of
such receiving devices were to exist, these broadcast messages
could be reliably captured, parsed, and forwarded in IP packets
via the Internet to any and all concerned parties, enabling
connectionless, distributed low-power M2M networks. In this
paper we present advlib, a software library for parsing low-
power wireless broadcast (also known as advertising) pack-
ets, with this objective. Experimental results indicate that,
coupled with the necessary receiver infrastructure, in many
cases at least the device vendor can be identified, validating
the potential for M2M forwarding. Moreover, results suggest
that sufficient semantically-meaningful information may be
extracted by the library to support contextual IoT applications
even at a local scale. Development continues on extending the
support of known protocols and establishing the necessary
relationships with device vendors.
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I. INTRODUCTION

Bluetooth Smart (historically referred to as BLE) is a low-
power wireless protocol for short range communications [1].
One specific feature of BLE not found in other versions
of Bluetooth is the ability for a device to spontaneously
broadcast short messages containing tens of bytes to any
receiving devices which may be in range. This is known
as advertising and it is similar in function to that of active
RFID, where devices periodically emit unsolicited messages
including their identifier and possibly sensor and/or status
data. For instance, our company, reelyActive has success-
fully developed a proprietary active RFID protocol in 2012
with similar characteristics. However, the key differentiator
is that BLE is today shipping over 3 billion devices annually
[2] which are used globally, while proprietary active RFID
technologies, such as our own, are relegated to specific
applications in specific geographies. As a result, BLE is
arguably the first global low-power wireless standard and,
as such, is likely to play a significant role in the Internet of
Things (IoT).
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While the phrase Internet of Things was coined in 1999
[3] extensive use of the term is a far more recent occurrence,
paralleling the proliferation of inexpensive, interoperable
and embeddable wireless chipsets which make their inclu-
sion in everyday objects increasingly economically viable.
While industry veterans such as Cisco suggest that 50 billion
devices will connect to the IoT by 2020 [4], other research
takes an alternative view, suggesting 212 billion comput-
erized devices by 2020, of which 15% will be connected
[5]. Should a significant number of those extra 162 billion
devices possess a BLE chip or similar technology, it is
indeed foreseeable that they could at least occasionally be
IoT-connected when in range of edge routers capable of
receiving their periodic broadcasts. Admitting this case, the
total number of IoT devices by 2020 may indeed be higher
than widely predicted.

In 2013, we at reelyActive published a paper entitled
“Towards a Simple, Versatile, Distributed Low-Power Wire-
less M2M Infrastructure” [6] in which we presented edge
routers capable of receiving and forwarding over IP networks
both BLE and proprietary active RFID broadcast packets. At
that time, the number of advertising BLE devices detected
in a crowded public space was typically low, and often
zero. Compare that with today where the authors have often
observed, in range of a single receiver, over 100 adver-
tising devices at technology conferences. The proliferation
of Apple iBeacons [7], wearables, and emerging standards
such as Eddystone [8], an open beacon format from Google,
all based on BLE, means that it is not uncommon for
even sparsely deployed infrastructure to discover a new
advertising device every week.

In light of this proliferation, there is a need for an open
tool which can parse and extract semantic meaning [9] from
the plethora of advertisement data. In this paper we present
a software library for parsing low-power wireless broadcast
packets which supports both BLE and our own proprietary
active RFID protocol. Our motivation is twofold: first to
facilitate low-power, connectionless M2M and, second, to
facilitate novel, contextual IoT applications.



II. Low-POWER WIRELESS ADVERTISING

In this section we present the characteristics of low-power
wireless advertising. First we present the BLE advertising
protocol followed by protocols built on top thereof. Lastly
we present the reelyActive active RFID protocol.

A detailed examination of BLE can be found in [10].
For instance, BLE has two ways of communicating. Firstly,
using advertisements, where a BLE peripheral device (ad-
vertiser) broadcasts packets to every device around it. The
receiving device (scanner) can then act on this information or
connect to receive more information. Secondly, is to receive
packets using a connection, where both the peripheral and
central send packets.

The BLE channel plan is split into 37 data communication
channels and 3 dedicated advertising channels used for
device discovery, connection initiation and broadcasting.
Adpvertising channels are allocated in different parts of the
spectrum in order to avoid interference from 802.11/Wi-Fi
signal. This is demonstrated in Figure 1.
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Figure 1. The 2.4GHz spectrum for Bluetooth extends from 2402MHz to
2480MHz. LE uses 40 1MHz wide channels, numbered 0 to 39. Each is
separated by 2MHz. Channels 37, 38, and 39 are used only for sending
advertisement packets. The rest are used for data exchange during a
connection. [11]

A. BLE Advertising Packets

A BLE device in advertising mode may periodically
transmit packets carrying advertising information as Payload
Data Units (PDU) on the RF channels dedicated for this
purpose.

Table I
ALLOWABLE RESPONSES TO ADVERTISING EVENT TYPES

Advertising Event Type PDU Used Sc bl Connectable
Connectable Undirected ADV_IND YES YES
Connectable Directed ADV_DIRECT_IND NO YES
Non-Connectable Undirected | ADV_NONCONN_IND | NO NO
Discoverable Undirected ADV_DISCOVER_IND YES NO

As Table 1 explains, there are several PDU types for the
advertisements which indicate whether the device accepts
connections and/or whether it will respond to a scan request
in which it may send a second complimentary packet con-
taining additional information.

As shown in Figure 2 and 3, a standard BLE advertising
packets consist of the Preamble (1 byte), Access Address (4
bytes), Payload Data Unit (PDU) (up to 39 bytes) and CRC
(3 bytes). Only the PDU contains information pertinent to
our motivations, the other bytes can be seen as overhead.

An advertising packet PDU has a header and a variable
payload. The header contains information about the size of
the payload and its type. The payload supports a variable
number of advertisement data structures which are limited
to 31 bytes.

A one-bit flag (TxAdd) contained in the two-byte header
indicates whether this address is public or random. Public
addresses are uniquely assigned to the device by the IEEE.
Random addresses are, as the name implies, randomly
selected and may change over time.

Payload data structure types are specified by the Generic
Access Profile (GAP) and include service UUIDs, name
strings, service data as well as manufacturer specific data
for generic information [12].

B. Protocols built on BLE

1) iBeacon: In 2013, Apple unveiled the iBeacon proto-
col as a way to add real world context to smartphone appli-
cations. An iBeacon is a BLE advertiser with manufacturer
specific data defined by Apple. This data includes a 16 byte
UUID, four additional identification bytes and transmission
power indication, as shown in Figure 2.

Preamble Access Address CRC
(1byte ) (4 bytes ) (3 bytes )
Header | MAC address Data
(2bytes) | (6 bytes) (0-31 bytes)
Flags Header gsnas::“ Proximity UUID Major Minor | TX Power
(Sbytes) | = (4bytes) | 5 iosy (16 bytes ) (2bytes) | (2bytes) | (2bytes )

Figure 2. Bluetooth Packet with iBeacon

2) Eddystone: In July 2015, Google released their very
own cross platform, open-source, Eddystone Beacon. More
interestingly, in addition to broadcasting a UUID, Eddystone
also broadcasts two more packets (or frame types) - a
uniform resource locator (URL), and a Telemetry (TLM)
stream. The URL frame type is a lot more flexible than
broadcasting the UUID (which is just a unique string of
numbers and letters). Therefore, instead of being a pointer
to a back-end database, uninterpretable by anyone except
the company and the native app with which the beacon
is associated, a URL can be interpreted by any piece of
software that can decode the beacon. Furthermore, the TLM
frame type broadcasts data obtained from sensors. This
allows the triggering of different actions based on sensors



data such as temperature, humidity, sound, and proximity,
as is common in traditional M2M applications.

Preamble Access Address CRC
(1byte) (4bytes ) (3bytes )
Header | MAC address Data
(2bytes) | (6bytes) (0-31 bytes)
Flags Complete 16-Bit UUID Service Data
(3bytes) (4bytes) (0-24 Bytes)
UID
Length .'I?;':; uuD | Frame =
1 by 2b 1 by
(1 byte) (1byte) (2bytes) [(1byte) —
Figure 3. Bluetooth Packet with Eddystone

C. reelyActive Advertising Packets

The reelyActive proprietary active RFID protocol cur-
rently supports two packet types: identification, and iden-
tification plus sensor data.

Both packet types support a globally unique EUI-64
identifier where the OUI-36, belonging to reelyActive, is
implicit. As a result, any advertising device can be positively
and uniquely identified. In the case of the latter packet, both
the temperature and battery voltage of the device are also
present.

III. ADVLIB

Here we present the design and implementation of advlib,
our open source library for parsing low-power wireless
broadcast packets. We first present the design considerations
followed by the final implementation.

A. Design Considerations

The majority of reelyActive software is open source and
written in JavaScript. Server-side code is based on the
Node.js framework and client-side code makes extensive
use of the Angular]JS framework. While these precedents
contribute largely to the design of advlib, we nonetheless
present the specific considerations for the project.

1) Open-Source: Given that the library will evolve con-
tinuously as the BLE and other low-power wireless protocols
evolve, and as new devices come online, it is imperative that
the project be open source and moreover accept contribu-
tions from outside developers with timely domain-specific
knowledge.

2) Lightweight server-side operation: Given that the li-
brary will run not only on powerful cloud servers but also
on the resource-constrained embedded hardware of the edge
devices of the IoT, it is imperative that the library support
lightweight server-side operation.

)

3) Client-side operation: The ability to run the library in
a standard web browser with a simple user interface (UI)
is not imperative, but highly desirable as it permits users
to parse and manipulate raw packets without the need for
installing and running software.

In all cases it is imperative that the tools and frameworks
be licensed for free use in order to facilitate widespread
adoption for the IoT.

B. Implementation

Based on the design considerations, advlib is written in
JavaScript for the Node.js framework. A bundled version is
available as an npm package which installs in a single line
[13]. The open source code is available on GitHub [14] under
an MIT License. A client-side version is equally available
and hosted on GitHub Pages for anyone to use live [15].

advlib ingests PDUs as raw hexadecimal strings and out-
puts the parsed data as JavaScript Object Notation (JSON).
The following code snippet demonstrates the API call re-
quired to process a BLE PDU.

lvar advlib = require (’advlib’);
2var rawPDU "421655daba50...7;
3var output advlib.ble.process (rawPDU) ;

4console.log (output) ;

Examples of the JSON output are provided in the follow-
ing section, and additional documentation can be found on
the GitHub and npm project pages presented previously.

IV. EXPERIMENTAL RESULTS

We have used advlib in conjunction with hardware re-
ceivers in both private and public environments to capture
and parse real-world BLE advertising packets as well as
those of our own active RFID devices. In this section we
present what identification and sensor data can typically be
extracted, specifically that which is non-proprietary and can
be decoded.

A. Identification by Advertiser Address

Each BLE advertisement packet contains, at a minimum,
a 48-bit address which identifies the advertising device. The
following JSON is the output of advlib for a minimal packet.

—_
==

2 type: "ADVA-438",
3 wvalue: "5278795d1474",
4 advHeader: {
5 type: "SCAN_REQ",
6 length: 12,
7 txAdd: "random",
8 rxAdd: "public"
° },
advData: {}

—_
—_
—
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In this case the 48-bit address, represented in hexadecimal,
is 52:78:79:5d:14:74. Here the address is random, which we
have observed as typical for smartphones from which this
packet originated.

More specifically, this packet is of the SCAN_REQ type.
We have observed that when edge routers advertise using the
ADV_DISCOVER_IND packet type (see Table 1) which is
scannable but not connectable, BLE-enabled smartphones
in range will indeed often scan the edge router with a
SCAN_REQ packet. In this special case, a device such
as a smartphone, which we have not observed sending
unsolicited advertisement packets, is nonetheless incited to
divulge its advertiser address in the scan request. From our
observations, devices running the latest mobile operating
systems such as i0S8 and Android 5 use random advertiser
addresses which change regularly, and therefore these cannot
be uniquely identified.

B. Identification by Service UUIDs

1) iBeacon UUID: The following example demonstrates
the BLE packet for a Kontakt.io iBeacon. This is classified
according to its ‘manufacturerSpecificData.iBeacon.uuid’
property, which the authors determined experimentally
through device isolation, although it resides with Apple in
their iBeacon classification.

advData: {
manufacturerSpecificData: {
companyName: "Apple, Inc.",
companyIdentifierCode: "004c",
data: "0215f7826da64fa24e988024bc5b7
1e0893ef7e84be5b3",
iBeacon: {

uuid: "f7826dac4fa24e988024bcbb71e
0893e",

major: "f7e8",

minor: "4beb5",

txPower: "-77dBm",

licenseeName: "Kontakt.io"

}
¥
}

2) BLE UUID: The following example demonstrates the
parsed BLE packet data for the FitBit. This is classi-
fied according to its ‘nonComplete128BitUUIDs’ property,
which the authors determined experimentally through their
observation of multiple FitBit devices.

advData: {
nonCompletel28BitUUIDS:
601bda2bffaa68956ba",
serviceData: {
"180a",
"1204eb150000"

"adabfb006e7d4

uuid:
data:

6 specificationName: "Device

Information"
7}

8}

3) Local Name: The following example demonstrates the
parsed BLE packet data for the Xiaomi Mi Band. This is
classified according to its ‘completeLocalName’ property,
which the authors determined experimentally through their
observation of multiple Mi Bands.

ladvData: {
2 completelLocalName:

)

"MI n

C. Contextual Data by URL

As previously described in the Eddystone subsection, an
advertised URL can serve to provide far more contextual
information when accessed than an identifier alone.

The following example demonstrates the parsed BLE
packet data for the UriBeacon, precursor to the Eddystone.
The URL is encoded in the ‘serviceData’ object.

tadvData: {

2> serviceData: {

3 uuid: "fed8",

4 data: "00£202757269626561636£6e08",
5 companyName: "Google",

6 uriBeacon: {

7 invisibleHint: "false",

8 "-14dBm",

9 "http://uribeacon.org"

txPower:
url:

10 }
o}
12}

D. Identification by EUI-64

Each reelyActive advertisement packet contains, at a
minimum, a 28-bit address which, coupled with the implicit
OUI-36 (0x001bc5094), forms an EUI-64 identifying the
advertising device. The following JSON is the output of
advlib for a minimal packet.

1{
2 type:
3 wvalue:

4}

"EUI-64",
"001bc50941234567"

V. PRESENT AND FUTURE APPLICATIONS

As presented in Section III, advlib is freely available for
use as an open source software package, and is integrated in
the reelyActive software stack. As such it currently serves in
applications ranging from retail analytics to social discovery
in co-working spaces to physical collision detection. In



this section we present how advlib currently contributes to
contextual IoT applications and how it may contribute to
low-power wireless M2M and might even be used for reverse
look-up.

A. Contextual Smart Spaces

In 2013, we at reelyActive published a paper entitled
Hyperlocal Context to Facilitate an Internet of Things Un-
derstanding of the World [16] in which we presented a
contextual visualisation of people present at a location, as
detected by their uniquely identifiable active RFID tags. This
visualisation has evolved as a platform entitled Smart Spaces
[17] which is a commercially viable product.

Currently the information about the device vendor as
extracted by advlib serves to visualise the variety of devices
which are in range of receiver infrastructure, as shown in
Figure 4. For instance, an Estimote iBeacon is displayed as
such because it can be uniquely identified by its iBeacon
UUID, as described in Section II.

This here is a reelyActive smart space.

What'sellere

view. - Who's Here? A Social Scene

Figure 4. Devices at Bluetooth World 2015

The URI Beacon protocol, now integrated into Eddystone
as described in Section II, is especially promising because
compatible devices can simply advertise a URL at which
all the information required for visualisation in the Smart
Spaces interface can be provided. This technique is success-
fully used today.

B. Distributed M2M

Given that the vendor of many low-power wireless devices
can be determined from an advertising packet, it would
be feasible to forward those packets to the corresponding
vendor via an APIL In this case, the vendor could process
and, in turn, forward the data to any concerned parties. Since
it is not uncommon for receiver infrastructure owned by one
party to communicate with software running advlib operated
by a second party, such a forwarding arrangement would
in effect represent distributed M2M. A relevant example
involves BLE tracking devices such as those sold by Tile
[18] or TrackR [19]. Third party receiver infrastructure
could capture such devices’ broadcast packets, and forward

these to the corresponding vendor. This can be seen as an
extension of “crowd GPS” applications leveraging mobile
phones as receivers, not unlike those discussed in [20] and
[21].

C. Reverse operation

The current advlib software converts raw hexadecimal
strings into meaningful JSON, however practical applica-
tions of the reverse can be imagined. For instance, it would
be desirable to create an advertising packet via a GUI in a
web browser which would convert the packet to raw bytes
which would be understood by transmitter infrastructure.
This feature is prioritized for future development.

VI. CONCLUSION

In this paper we have presented the capabilities of an
open source software library for parsing low-power wireless
broadcast packets. We have demonstrated that unique identi-
fication of devices and/or their vendors is often possible from
these packets, as is sensor data. As a result, this information
is currently being used successfully for contextual IoT
applications and is in the pilot phase for distributed M2M
applications such as those presented herein. Thanks to low-
power wireless standards such as BLE, the IoT is growing by
billions of devices per year, and the advlib is well positioned
as an open, extensible library, accessible to the scientific and
industrial communities alike, for the interpretation of any
and all data these devices may advertise.
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